Asset modeling, stochastic volatility and stochastic correlation

“… models are stuck in the classical risk-factor approach, with correlation modeled exogenously” (Jon Gregory)

Xiang Lu, Gunter Meissner

Abstract

Asset prices are typically modeled with the geometric Brownian motion (GBM). Correlation between the assets is exogenously modeled and then ad-hoc assigned to the asset prices. This is conceptually and mathematically unsatisfying. We create a new, simple approach, which simultaneously models stochastic volatility and stochastic correlation. This approach replicates the real-world volatility – correlation relationship well. We apply the model to extend the geometric Brownian motion. This extension has a CAPM interpretation and improves the modeling of asset prices significantly.

Keywords: Asset modeling, stochastic volatility, stochastic correlation, Heston model

JEL Classification: C12, C32

Xiang Lu
University of Hawaii
Email: lvxiang@hawaii.edu
Gunter Meissner
University of Hawaii
Email: meissner@hawaii.edu
Corresponding author
1. Introduction and Motivation

Asset prices are typically modeled with the Geometric Brownian motion (GBM) of the form

\[d \ln S(t) = \mu \, dt + \sigma \, dw(t) \]

(1)

where \(S(t) \) is the asset price, \(\mu \) is the drift of \(S \), \(\sigma \) is the volatility of \(S \), and \(dw(t) \) is the standard Brownian motion, i.e. \(dw(t) = \varepsilon \sqrt{dt} \), \(\varepsilon \) is i.i.d., in particular \(\varepsilon \) is a random drawing from a standardized normal distribution \(n \sim (0,1) \).

Numerous extensions of the GBM exist. Merton (1976) adds jumps to the GBM and shows that if the logarithm of the percentage jump is normally distributed, a closed form solution of European style options exists. Cox and Ross (1976) create the constant elasticity of variance (CEV) model, where an exponential parameter \(\alpha \) added to the asset price. The value of \(\alpha \) determines the dependence between asset price and volatility. Stochastic volatility is introduced to the GBM in the seminal Heston (1993) model. A local volatility approach, in which the volatility is a function of the underlying price and time, is added to the GBM by Dupire (1994).

While stochastic volatility has been applied to the GBM, stochastic correlation is a fairly new field, which still awaits integration into a stock price process as the GBM. Even deterministic financial correlation approaches are not
unified with a stock price model. Let’s briefly review the most popular correlation approaches in finance.

Some authors as Das et al (2006) or Fitch (2006) apply the Pearson correlation coefficient. However, the limitations of Pearson correlation approach in finance are evident. First, linear dependencies as assessed in the Pearson approach do not appear often in finance. In addition, zero Pearson correlation does not necessarily mean independence. This is because only the two first moments are considered. For example, $Y = X^2 \{y \neq 0\}$ will lead to Pearson correlation coefficient of 0, which is arguably misleading. Furthermore, linear correlation measures are only natural dependence measures if the joint distribution of the variables is elliptical. However, only few distributions such as the multivariate normal distribution and the multivariate student-t distribution are special cases of elliptical distributions, for which linear correlation measure can be meaningfully interpreted.

A further popular correlation measure, mainly applied to default correlation, is the binomial correlation approach of Lucas (1995). However, the binomial correlation approach is a limiting case of the Pearson correlation approach. As a consequence, the significant shortcomings of the Pearson correlation approach for financial modeling apply also to the binomial correlation model.

One of the most widely applied correlation approaches in finance was generated by Steven Heston in 1993. Heston correlates the Brownian motion of a stock price of equation (1) with the Brownian motion of a mean reverting stochastic volatility process. We will apply the Heston approach in our paper to correlate stochastic volatility and stochastic correlation.

Further popular correlation approaches applied in finance are Copula correlations introduced by Sklar (1959) and Li (2000). A factorization of the copula approach leads to conditionally independent (CID) correlation modeling, which was introduced by Vasicek (1987), and extended by Hull et al (2005) and Burtschell et al (2007). We will apply the CID correlation approach in a portfolio extension of our model.

Importantly, the geometric Brownian motion and the existing correlation approaches are currently not unified in a consistent model. Rather, the correlations between one of more assets are exogenously derived and then ad hoc added to the Brownian motion. This is mathematically and conceptually unsatisfying.

To the best of our knowledge, there are only two papers that apply stochastic correlation to the GBM. One is Hull et al (2005). They model the asset process with a GBM and then sample the correlation from a beta distribution. However, their stochastic correlation is exogenously derived and does not follow a time dependent stochastic process. The second paper is Ma (2009). Here stochastic volatility and stochastic correlation processes are applied to price exchange rate options. However, volatility and correlation are assumed independent.

Emmerich (2006) discusses mathematical properties of a stochastic correlation process. Duellman et al (2008) model stochastic correlation with a Vasicek process. However, both papers do not combine the correlation process with the asset process.

Several other papers mention the term 'stochastic correlation' as Burtschell et al (2005), Burachi et al (2006) or Fonesca et al (2008). However, in these papers correlation is stochastically sampled from a distribution or is inferred from a historical price correlation matrix. The correlation does not follow a time dependent stochastic process with drift and noise.
Our paper has three main contributions. First, we build a stochastic volatility – stochastic correlation model, which fits real world volatility – correlation relationships well. Second, we integrate our model into the geometric Brownian motion (GBM). This new GBM has a CAPM interpretation and improves the modeling of stock prices significantly. Third, we apply a portfolio approach in which we correlate individual stocks with the conditionally independent (CID) correlation model. This portfolio approach results in a better fit of real world data than the modeling of individual stocks.

The remaining paper is structured as follows: In section 2 we build a combined stochastic asset volatility – stochastic asset correlation model. In section 3 we apply the model to extend the GBM. In section 4 we show that our model can replicate the assets process better than the standard GBM. Section 5 concludes.

2. The Model

We suggest a new, simple approach to simultaneously model stochastic volatility and stochastic correlation. In particular, we model

\[d\sigma = (a_{\sigma} - b_{\sigma})dt + \nu_{\sigma}\sqrt{\sigma} \, dw_1 \] \hspace{1cm} (2)

\[dp = (a_p - b_p)dt + v_p\sqrt{1-\rho^2} \, dw_2 \] \hspace{1cm} (3)

\[dw_1 = \rho_w dw_2 + \sqrt{1-\rho_w^2} \, dw_3 \] \hspace{1cm} (4)

Equation (2) models stochastic volatility of the market, represented by the S&P 500, with the Cox, Ingersoll, Ross (CIR) model. Hence we have \(\sigma \) : implied Volatility (VIX) of the S&P 500, \(a_{\sigma} \) : mean reversion of \(\sigma \), \(b_{\sigma} \) : long term mean of \(\sigma \), \(\nu_{\sigma} \) : volatility of \(\sigma \).
Equation (3) models stochastic correlation between an individual stock and the market with a modified Jacobi process. Hence \(a_\rho \): mean reversion of \(\rho \), \(b_\rho \): long term mean of \(\rho \), \(\nu_\rho \): volatility of \(\rho \).

Equation (4) correlates the Brownian motion \(dw_1 \) of the stochastic volatility process and the Brownian motion \(dw_2 \) of the stochastic correlation process with the Heston (1993) model. Hence \(dw_2 \) and \(dw_3 \) are independent Brownian motions and each Brownian motion is a Markov process, i.e. \(dw(t) \) and \(dw(t') \) are independent, \(t \neq t' \).

Real world fit

From empirical data we derive the historical volatility – correlation relationships as seen in Figure 1:

Figure 1: Empirical relationship between implied volatility (VIX) of the S&P, and the correlation between Chevron Corp and the S&P (top-left). Time series plot of the empirical VIX and empirical correlation between CVX and the S&P (top-right). Histogram of VIX (bottom-left). Histogram of the correlation coefficient (bottom-right).

We expect that our model produces a similar positive, ‘triangular’ relationship between volatility \(\sigma \) and correlation \(\rho \) as in Figure 1 top left, since if
\(\rho_w \) in equation (4) is positive, we have a positive dependency between \(\sigma \) and \(\rho \). In addition, the volatility of correlation \(\nu_\rho \) decreases if volatility increases due to the term \(\nu_\rho \sqrt{1-\rho^2} \) in equation (3).

We calibrate the model of equations (2) to (4) using standard Maximum Likelihood techniques. In particular, we use 100,000 time steps for each equation with \(dt = 0.1 \). To stabilize the data, we repeat this process 100 times and average the data. We find that our model replicates real-world volatility–correlation relationships of Figure 1 well:

![Figure 2: Simulation results of the model of equations (2) to (4) with parameter values \(a_\sigma=0.0104, b_\sigma=0.0140, \nu_\sigma=0.0075, a_\rho=0.0158, b_\rho=0.4249, \nu_\rho=0.0504, \) and \(\rho_w=0.7 \)](image)

3. Application of the model

We now apply our model of equations (2) to (4) to improve the geometric Brownian motion (GBM) of equation (1). Dropping the argument \(t \) to simplify notation, we model

\[
d \ln S_t = \mu_i \, dt + \sigma_i \, dw_t + \beta_i \, \rho \, \sigma \, dw \quad (5)
\]
where \(S_i \) is the asset price of entity \(i \), \(\mu_i \) is the drift of \(S_i \), \(\sigma_i \) is the volatility of \(S_i \), and \(\beta_i \) is a positive constant. \(\rho \) is the correlation between an individual stock and the market, represented by the S&P 500. \(\rho \) is modeled as the stochastic process by equation (3). \(\sigma \) is the volatility of the market, represented by the VIX of the S&P 500, which is modeled by equation (2). The Brownian motions of \(\rho \) and \(\sigma \) are correlated via equation (4). \(dw \) is the Brownian motion of the market component.

Equation (5) has a CAPM interpretation. The first two terms on the right side of equation (5) represent the idiosyncratic stock component. The term \(\sigma \, dw \) represents the systematic market risk factor, which is shared by all stocks. The impact magnitude of systematic component on the stock is \(\beta_i \, \rho \).

4. Results

We again use Maximum Likelihood techniques to calibrate the Geometric Brownian motion (GBM) of equation (1), and our model of equations (2) to (5). With respect to our approach, we model the variables \(\rho \) and \(\sigma \) in equation (5) with equations (2) to (4). We then optimize the critical parameters \(\sigma_i \) and \(\beta_i \), so that the absolute difference of standard deviation and kurtosis between the real-world distribution and our distribution of equation (5) is minimized.

We derive the distributions for Coca Cola Corporation (KO) as seen in Figure 3.
Figure 3: PDF and CDF for Coca Cola Corporation (KO). Model data of equations (2) to (5) is derived with parameter values $a_0=0.0104$, $b_0=0.0140$, $\nu_0=0.0075$, $a_p=0.0245$, $b_p=0.3136$, $\nu_p=0.0530$, $\rho_w=0.7$, $\mu_i=8.068 \times 10^{-5}$, $\sigma_i=0.034$, and $\beta_i=2.1119$. The time unit is daily.

From Figure 3 we observe that our model of equations (2) - (5) replicates the market distribution of KO better than the standard GBM of equation (1). This is verified by standard statistics. The Chi-square goodness-of-fit test shows a p-value of 0.8164 ($\chi^2=5.986$) between our model distribution and the empirical distribution, while the p-value is 0.054 ($\chi^2=19.411$) between the GBM-normal distribution and the empirical distribution. Our model gives similar results for other stocks that we tested.

In addition, our model catches the fat tails as seen in Figure 4.
Figure 4: Tail distribution of Coca Cola Corporation (KO). Model data derived by equations (2) to (5) with parameter values as in Figure 3.

Portfolio approach

As discussed, we correlate stochastic volatility of the market σ and stochastic correlation ρ between the market and an individual stock with equations (2) to (4).

In a portfolio approach we additionally model the correlation between individual stocks. Correlating multiple assets can be conveniently achieved with the conditionally independent (CID) correlation model, introduced by Vasicek (1987), and extended by Hull et al (2005) and Burtschell et al (2007). Hence, we indirectly condition the individual stock prices S_i, $i=1,\ldots,n$ in the portfolio on a common market factor σdw as seen in equation (5). The impact of the common market factor on a specific stock i, is $\beta_i \rho$.

The result of the portfolio approach is displayed in Figure 5. We model the Dow components ATT (T), Coca Cola (KO), Disney (DIS), and Pfizer (PFE) and Verizon (VZ), each with equations (2) to (5) and average the outcome.
Comparing Figures 3 and 5, we observe that the portfolio approach in Figure 5 results in a slightly better fit of the empirical data than modeling an individual stock in Figure 3. This is confirmed by standard statistics. The p-value increases from 0.8164 (chi\(^2\)=5.986) to 0.9605 (chi\(^2\)=5.560). When testing different portfolios and comparing the result to modeling individual stocks, we get similar results. The reasons for the better results of the portfolio approach are twofold. First, the correlation between individual stocks is applied in the portfolio approach. Second, differences of variance, skew and kurtosis between the individually modeled stocks and the empirical data are smoothed in the portfolio approach.

Further research

The basic model presented here can be extended in numerous ways. We can add jumps to the GBM (Merton 1976), extent the GBM to the CEV (constant elasticity of variance) model (Cox and Ross 1976), or test a pure jump model as
the Variance Gamma model (Madan et al 1998). We can test if other variables as bonds, commodities, exchange rates, credit spreads, economic variables, real estate values, weather data as temperature or precipitation etc. can be replicated with our suggested model or variations of the model.

In addition, we could make the parameter ρ_w in equation (4), which correlates stochastic volatility and stochastic correlation, stochastic and dependent on other variables. The same applies to the other parameters as μ_1 and σ_1. We could also add a drift term to the market factor in equation (5).

Regarding the application of the model, we may test if the model replicates realistic implied volatility smiles.

We also found a semi-quadratic relationship between asset return and asset correlation. I.e. correlation is high for negative returns and correlation is high, but to a lesser extent, for positive returns. However, this relationship appears to be quite instable.

5. Conclusion

We build a rigorous stochastic asset volatility – stochastic asset correlation model. The model fits real world volatility – correlation properties well. We apply the model and add a systematic component to the standard geometric Brownian motion (GBM). The extension improves the modeling of asset prices. We also apply a conditionally independent (CID) correlation approach between individual stocks in a portfolio approach. This portfolio approach improves asset modeling further. The basic model presented here can be extended in numerous ways.
Appendix:
The parameter values for the model

\[
d\sigma = (a_\sigma - b_\sigma)dt + \nu_\sigma \sqrt{\sigma} \, dw_1
\]
(2)

\[
d\rho = (a_\rho - b_\rho)dt + \nu_\rho \sqrt{1-\rho^2} \, dw_2
\]
(3)

\[
dw_1 = \rho_w dw_2 + \sqrt{1-\rho_w^2} \, dw_3
\]
(4)

\[
d \ln S_i = \mu_i \, dt + \sigma_i \, dw_1 + \beta_i \, \rho \sigma \, dw
\]
(5)

for the individual stock processes \(S_i\) in the portfolio approach discussed in section 4, displayed in Figure 5, are

DIS: \(a_\sigma = 0.0104, b_\sigma = 0.0140, \nu_\sigma = 0.0075, a_\rho = 0.0265, b_\rho = 0.4803, \nu_\rho = 0.0533, \rho_w = 0.7, \mu_i = 5.9791 \times 10^{-5}, \sigma_i = 0.0027, \text{ and } \beta_i = 2.7308.\)

KO: \(a_\sigma = 0.0104, b_\sigma = 0.0140, \nu_\sigma = 0.0075, a_\rho = 0.0245, b_\rho = 0.3136, \nu_\rho = 0.0530, \rho_w = 0.7, \mu_i = 8.068x10^{-5}, \sigma_i = 0.034, \text{ and } \beta_i = 2.1119.\)

PFE: \(a_\sigma = 0.0104, b_\sigma = 0.0140, \nu_\sigma = 0.0075, a_\rho = 0.0262, b_\rho = 0.3876, \nu_\rho = 0.0528, \rho_w = 0.7, \mu_i = -1.0949x10^{-4}, \sigma_i = 0.023, \text{ and } \beta_i = 2.6527.\)

T: \(a_\sigma = 0.0104, b_\sigma = 0.0140, \nu_\sigma = 0.0075, a_\rho = 0.0231, b_\rho = 0.3850, \nu_\rho = 0.0491, \rho_w = 0.7, \mu_i = -5.6201x10^{-4}, \sigma_i = 0.031, \text{ and } \beta_i = 2.3344.\)

VZ: \(a_\sigma = 0.0104, b_\sigma = 0.0140, \nu_\sigma = 0.0075, a_\rho = 0.0262, b_\rho = 0.3876, \nu_\rho = 0.0528, \rho_w = 0.7, \mu_i = -1.0949x10^{-4}, \sigma_i = 0.023, \text{ and } \beta_i = 2.6527.\)
Literature

Heston, S. (1993), ”A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options”, The Review of Financial Studies, 6, 327-343,

Merton, R.C., (1976), Option pricing when the Underlying Stock Returns are Discontinuous, Journal of Financial Economics, 3, pp. 125-144

Sklar, A. (1959), "Fonctions de répartition à n dimensions et leurs marges", *Publications de l'Institut de Statistique de L'Université de Paris, 8*, 229-231, 1959
